Valeur pratique et philosophie des probabilités
Versailles, Lyon 2ᵉ, Lyon 6ᵉ...
Ce que dit l'éditeurValeur pratique et philosophie des probabilités La démarcation que l'on pourrait être tenté d'établir entre la valeur pratique de la théorie des probabilités et la valeur pratique des autres branches des mathématiques est beaucoup moins absolue qu'on pourrait le croire au premier abord, si l'on a le soin, comme il est naturel, pour se rendre compte de la valeur pratique d'une science, de se placer, non dans l'abstrait, mais dans les conditions mêmes où elle est pratiquement utilisée et utilisable. Nous nous rendrons compte que la question de la valeur de la théorie des probabilités est, en réalité, au centre de la théorie de la connaissance scientifique, car la valeur de tous les résultats de la science ne peut être évaluée que par un coefficient de probabilité. D'autre part, nous devons essayer de démêler les motifs humains et psychologiques pour lesquels certains hommes, parfois fort instruits et raisonnant correctement en d'autres matières, témoignent d'une incompréhension invraisemblable vis-à-vis de certains résultats de la théorie des probabilités. Nous ne saurions avoir la prétention de réformer la mentalité humaine, lorsque tant d'illustres savants n'y ont pas réussi ; mais peut-être arriverons-nous à convaincre les éducateurs de la jeunesse de la nécessité qu'il y aurait à initier les adolescents aux principes de la théorie des probabilités : on diminuerait sans doute ainsi la persistance de nombreux préjugés. Enfin, il nous paraît nécessaire d'insister un peu sur certaines difficultés réelles, qui se présentent à propos de certaines applications de la théorie des probabilités. Il ne faut point dissimuler ces difficultés, car il est nécessaire de marquer la limite entre les applications légitimes et correctes des probabilités et celles qui ne le sont pas. Toute science peut donner lieu à des applications incorrectes, qui ne sauraient diminuer la valeur de cette science. Lorsqu'un maître enseigne à ses élèves que l'on doit éviter d'additionner des grandeurs qui ne sont pas de même nature, si l'un d'eux passe outre et conclut que 3 kilogrammes et 4 grammes font 7 hectogrammes, cette erreur ne prouve rien contre la valeur rigoureuse de la théorie de l'addition des nombres entiers. |
RésuméTraite de la théorie des probabilités et de sa mise en pratique. ©Electre 2024 |
Caractéristiques Éditeur(s) Date de parution
12 novembre 2009
Rayon
Mathématiques
Contributeur(s) Emile Borel
(Auteur) EAN
9782876473409
Reliure
Broché
Dimensions
24.0
cm x
17.0
cm x
1.2
cm
Poids
360
g
|